math dump¶
Contents
1 binomial coefficients¶
a central binomial coefficient is a binomial coefficient of the form \(\displaystyle \binom{2n}{n}\)
Interpretation of binomial coefficients \(N:=\displaystyle \binom{m}{n}\)
There are \(N\) ways to choose \(n\) elements from a set of \(m\) elements.
There are \(N\) ways to choose \(n\) objects from a collection (in which repetitions are allowed) of \(m-n+1\) objects.
There are \(N\) strings containing \(n\) ones and \(m-n\) zeros.
There are \(N\) strings consisting of \(n\) ones and \(m-1\) zeros such that no two ones are adjacent.
\(\displaystyle (X+Y)^{n} = \sum_{k=0}^{n} \binom{n}{k} X^{n-k} Y^{k}\) for \(n \in \mathbb{N}_{\ge 0}\) and \(X,Y\) are indeterminates.
1.1 identities¶
\(\displaystyle \binom{m}{n} = \binom{m}{m-n}\) for \(m,n\in\mathbb{N}_{\ge 0}\) such that \(m \ge n\). However, for those \(m\) and \(n\), \(\displaystyle \binom{-n}{m} \ne \binom{-n}{-n-m}\).
Pascal’s rule (Pascal’s triangle): \(\displaystyle \binom{n}{k} + \binom{n}{k+1}=\binom{n+1}{k+1}\)
\(\displaystyle \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}\)
\(\displaystyle \binom{n-1}{k} - \binom{n-1}{k-1} = \frac{n-2k}{n} \binom{n}{k}\)
\(\displaystyle \binom{n}{i} \binom{n-i}{j} = \binom{n}{j} \binom{n-j}{i}\)
\(\displaystyle \binom{n}{k} = \frac{n+1-k}{k} \binom{n}{k-1}\)
\(\displaystyle \int_{-\pi}^{\pi} \cos ((2m-n)x)\cos^{n}x\, dx = \frac{\pi}{2^{n-1}} \binom{n}{m}\)
\(\displaystyle \int_{-\pi}^{\pi} \sin((2m-n)x) \sin^{n}x \, dx = \begin{cases}(-1)^{m+(n+2)/2}\frac{\pi}{2^{n-1}}\binom{n}{m} & \text{ when } n\text{ is odd}\\ 0 & \text{ otherwise} \end{cases}\)
\(\displaystyle \int_{-\pi}^{\pi} \cos((2m-n)x) \sin^{n}x \, dx = \begin{cases}(-1)^{m+(n/2)}\frac{\pi}{2^{n-1}} \binom{n}{m} & \text{ when } n \text{ is even}\\ 0 & \text{ otherwise}\end{cases}\)
\(\displaystyle \binom{z}{k} = (-1)^{k} \binom{-z+k-1}{k} = \frac{(-1)^{k}}{(k+1)^{z+1}\cdot \Gamma(-z)} \prod_{j=k+1}^\infty \frac{(1+\frac{1}{j})^{-z-1}}{1- \frac{z+1}{j} }\) for \(z \in \mathbb{C}\) and \(k \in \mathbb{N}_{\ge 0}\)
\(\displaystyle \binom{1/2}{k} = \binom{2k}{k} \frac{(-1)^{k+1}}{2^{2k}(2k-1)}\) for \(k \in \mathbb{N}_{\ge 0}\)
\(\displaystyle \binom{w}{z} = \frac{\sin z\pi}{\sin w\pi} \binom{-z-1}{-w-1} = \frac{\sin (w-z)\pi}{\sin w\pi} \binom{z-w-1}{z}\) for \(w,z\in\mathbb{C}\)
\(\displaystyle \binom{w}{z} \binom{z}{w} = \frac{\sin (w-z)\pi}{(w-z)\pi}\) for \(w,z\in\mathbb{C}\)
\(\displaystyle \binom{w}{z} = \frac{\Gamma(w+1)}{\Gamma(z+1)\Gamma(w-z+1)} = \frac{1}{(w+1)B(w-z+1,z+1)}\) where \(B(\_,\_)\) is the Beta function for \(w,z\in\mathbb{C}\)
1.2 Stirling number¶
\(\displaystyle \binom{t}{k} = \sum_{i=0}^{k} s(k,i)\frac{t^{i}}{k!}\) where \(s(k,i)\) is the Stirling number of the first kind
\(\displaystyle \binom{z}{n} = \frac{1}{n!} \sum_{k=0}^{n} z^{k} s(n,k) = \sum_{k=0}^{n} (z-z_{0})^{k} \sum_{l=k}^{n} \binom{z_{0}}{l-k} \frac{s(n+k-j,k)}{(n+k-j)!} = \sum_{k=0}^{n} (z-z_{0})^{k} \sum_{l=k}^{n} z_{0}^{l-k} \binom{l}{k} \frac{s(n,l)}{n!}\) for \(z,z_{0}\in \mathbb{C}\) and \(k \in \mathbb{N}_{\ge 0}\)
1.3 derivatives¶
\(\displaystyle \frac{d}{dt} \binom{t}{k} = \binom{t}{k} \sum_{i=0}^{k-1} \frac{1}{t-i}\)
1.4 relationship with polynomials¶
\(\displaystyle (X+Y)^{n} = \sum_{k=0}^{n} \binom{n}{k} X^{n-k} Y^{k}\) for \(n \in \mathbb{N}_{\ge 0}\) and \(X,Y\) are indeterminates.
for a field \(K\) of characteristic \(0\), \(P(t) \in K[t]\) is uniquely expressed as \(\displaystyle P(t) = \sum_{k=0}^{\deg P} a_{k} \binom{t}{k}\) where \(\displaystyle a_{k} = (-1)^{k-i} \binom{k}{i} P(i)\) , the /k/th difference of the sequence \(P(0),P(1),\ldots,P(k)\)
\(\displaystyle \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} P(j) = 0\) where \(P(j)\) is a polynomial of degree \(< n\)
\(\displaystyle \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} P(m+(n-j)d) = d^{n}\cdot n!\cdot a_{n}\) where \(P(x)\) is a polynomial of degree \(\le n\), \(a_{n}\) is its coefficient of degree \(n\) and \(m,d\in \mathbb{C}\)
1.5 finite sums¶
\(\displaystyle \sum_{k=0}^{n} \binom{n}{k} = 2^n\)
\(\displaystyle \sum_{k=0}^{n} k \binom{n}{k} = n 2^{n-1}\)
\(\displaystyle \sum_{k=0}^{n} k^2 \binom{n}{k} = (n+n^{2})2^{n-2}\)
Chu-Vandermonde identity: \(\displaystyle \sum_{j=0}^{k} \binom{m}{j} \binom{n-m}{k-j} = \binom{n}{k}\)
\(\displaystyle \sum_{j=0}^{m} \binom{m}{j}^{2} = \binom{2m}{m}\)
\(\displaystyle \sum_{m=k}^{n} \binom{m}{k} = \binom{n+1}{k+1}\)
\(\displaystyle \sum_{r=0}^{m} \binom{n+r}{r} = \binom{n+m+1}{m}\)
\(\displaystyle \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n-k}{k} = F(n+1)\) where \(F(n)\) is the \(n\) th Fibonacci number
\(\displaystyle \binom{n}{t} + \binom{n}{t+s} + \binom{n}{t+2s} + \cdots = \frac{1}{s} \sum_{j=0}^{s-1} \left(2 \cos \frac{\pi j}{s} \right)^{n} \cos \frac{\pi (n-2t) j}{s}\) Proof. This follows from the multisection of a binomial expansion
\[(1+x)^{n} = \binom{n}{0}x^{0} + \binom{n}{1} x + \binom{n}{2} x^{2} +\cdots\]\(\displaystyle \sum_{j=0}^{k} (-1)^{j} \binom{n}{j} = (-1)^{k} \binom{n-1}{k}\)
\(\displaystyle \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} P(j) = 0\) where \(P(j)\) is a polynomial of degree \(< n\)
\(\displaystyle \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} P(m+(n-j)d) = d^{n}\cdot n!\cdot a_{n}\) where \(P(x)\) is a polynomial of degree \(\le n\), \(a_{n}\) is its coefficient of degree \(n\) and \(m,d\in \mathbb{C}\)
\(\displaystyle \sum_{k-q}^{n} \binom{n}{k} \binom{k}{q} = 2^{n-q} \binom{n}{q}\)
\(\displaystyle \binom{z}{m} \binom{z}{n} = \sum_{k=0}^{m} \binom{m+n-k}{k,m-k,n-k} \binom{z}{m+n-k}\) for \(z\in\mathbb{C}\) and \(m,n\in\mathbb{N}_{\ge 0}\)
Dixon’s identity: \(\displaystyle \sum_{k=-a}^{a} (-1)^{k} \binom{a+b}{a+k} \binom{b+c}{b+k} \binom{c+a}{c+k} = \frac{(a+b+c)!}{a! b! c!}\) where \(a,b,c \in \mathbb{N}_{\ge 0}\)
\(\displaystyle \binom{z}{n}^{-1} = \sum_{k=0}^{n-1} (-1)^{n-1-k} \binom{n}{k} \frac{n-k}{z-k}\) for \(z\in\mathbb{C}\) and \(n\in\mathbb{N}_{\ge 0}\)
\(\displaystyle \binom{z+n}{n}^{-1} = \sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} \frac{k}{z+k}\) for \(z\in\mathbb{C}\) and \(n\in\mathbb{N}_{\ge 0}\)
1.6 series, generating functions¶
\(\displaystyle (1+z)^{\alpha} = \sum_{k=0}^{\infty} \binom{\alpha}{k} z^{k}\) for any \(\alpha,z\in \mathbb{C}\) with the radius for convergence \(1\).
\(\displaystyle \frac{k-1}{k} \sum_{j=0}^{\infty} \frac{1}{\binom{j+x}{k} }= \frac{1}{\binom{x-1}{k-1} }\) converges for \(k \ge 2\)
\(\displaystyle \sum_{k=0}^{\infty} \binom{n}{k} x^{k} = (1+x)^{n}\)
\(\displaystyle \sum_{n=k}^{\infty} \binom{n}{k} y^{n} = \frac{y^{k}}{(1-y)^{k+1}}\)
\(\displaystyle \sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n} = \frac{1}{1-y-xy}\)
\(\displaystyle \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \binom{n+k}{k} x^{k} y^{n} = \frac{1}{1-x-y}\)
\(\displaystyle \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \binom{n+k}{k} \frac{x^{k} y^{n}}{(n+k)!} = e^{x+y}\)
Newton’s binomial series: \(\displaystyle (1+z)^{\alpha} = \sum_{k=0}^{\infty} \binom{\alpha}{k} z^{k}\) for \(z,\alpha \in \mathbb{C}\) with the radius of convergence is \(1\).
\(\displaystyle (1-z)^{-(\alpha+1)} = \sum_{k=0}^{\infty} \binom{k+\alpha}{k} z^{k}\) for \(z,\alpha \in \mathbb{C}\) with the radius of convergence is \(1\).
1.7 divisibility¶
Kummer: \(\displaystyle \forall m,n \in \mathbb{N}_{\ge 0}, \forall\) prime \(p\), \(\displaystyle \max\left\{ a \in \mathbb{N}_{\ge 0} \mid p^{a}\Bigg| \binom{m+n}{m}\right\} =\) the number of carries when \(m\) and \(n\) are added in base \(p\) \(= \# \{j \in \mathbb{N}_{\ge 0} \mid {}\) the fractional part of \(m/p^{j}\) is greater than the fractional part of \((m+n)/p^j\}\)
\(\displaystyle \frac{n}{\mathrm{GCD}(n,k)}\Big| \binom{n}{k}\)
\(\displaystyle p\Big| \binom{p^r}{s}\) for \(\displaystyle \forall r,s \in \mathbb{Z}\) such that \(s < p^{r}\) where \(p\) is a prime number but \(\displaystyle p^{k}\not\Big| \binom{p^r}{s}\) in general for \(k \ge 2\), for eg, \(\displaystyle 3^{2}\not\Big| \binom{9}{6}\)
Singmaster: any integer divides almost all binomial coefficients. Note that the number of binomial coefficient \(\binom{n}{k}\) with \(n<N\) is \(N(N+1)/2\). Let \(f(d,N)\) be the number of binomial coefficients \(\binom{n}{k}\) with \(n< N\) such that \(d | \binom{n}{k}\). Then, for any \(d\), \(\displaystyle \lim_{N\rightarrow \infty} \frac{f(d,N)}{N(N+1)/2} = 1\)
\(\displaystyle \frac{\mathrm{LCM}(n,n+1,\ldots,n+k)}{n\cdot \mathrm{LCM} \left(\binom{k}{0}, \binom{k}{1}, \ldots, \binom{k}{k} \right)} \ \Big| \ \binom{n+k}{k} \ \Big| \ \frac{\mathrm{LCM}(n,n+1,\ldots,n+k)}{n}\)
\(n \ge 2\) is prime \(\displaystyle \Leftrightarrow \forall 1 \le k < n,\, n\Big| \binom{n}{k}\)
1.8 inequalities¶
\(\displaystyle \frac{n^{k}}{k^{k}} \le \binom{n}{k} \le \frac{n^{k}}{k!} < \Big(\frac{n\cdot e}{k} \Big)^k\) for \(1 \le k \le n\)
\(\displaystyle \binom{mn}{n} \ge \frac{m^{m(n-1)+1}}{\sqrt{n}\cdot (m-1)^{(m-1)(n-1)}}\) for \(m\ge 2\) and \(n\ge 1\)
\(\displaystyle \sum_{i=0}^{k} \binom{n}{i} \le \sum_{i=0}^{k} n^{i}\cdot 1^{k-i} \le (1+n)^{k}\)
\(\displaystyle \frac{2^{n\cdot H(\varepsilon)}}{\sqrt{8 n \varepsilon (1-\varepsilon)}} \le \sum_{i=0}^{k} \binom{n}{i} \le 2^{n\cdot H(\varepsilon)}\) for any integers \(n\ge k\ge 1\) with \(\varepsilon {}\dot{=}{} k/2 \le 1/2\) and \(H\) is the binary entropy function
1.9 asymptotes¶
\(\displaystyle \binom{n}{k} \sim \sqrt{\frac{n}{2 \pi k (n-k)} } \cdot \frac{ n^{n}}{k^{k}(n-k)^{n-k}}\) for \(n,k \gg 0\)
\(\displaystyle \binom{2n}{n} \sim \frac{2^{2n}}{\sqrt{\pi n}}\) for \(n \gg 0\)
\(\displaystyle \binom{n}{k} \sim 2^{nH(k/n)}\) where \(H\) is the binary entropy function \(H(p) := -p \log_{2}(p)-(1-p)\log_{2} (1-p)\)
\(\displaystyle \binom{n}{k} \approx \frac{(n-k/2)^{k}}{k^{k} e^{-k} \sqrt{2\pi k}} = \frac{(n/k-1/2)^{k} e^{k}}{\sqrt{2 \pi k}}\) for \(n\gg 0\) and \(k \ll n\)
\(\displaystyle \binom{n}{k} \approx \exp\Big( k \log (n/k-1/2)+k - 1/2 \log (2\pi k)\Big)\) for \(n\gg 0\) and \(k \ll n\)
\(\displaystyle \binom{n}{k} \approx \exp \Big( (n+1/2)\log \frac{n+1/2}{n-k+1/2} + k \log \frac{n-k+1/2}{k} - 1/2 \log (2\pi k) \Big)\) for \(n\gg 0\) and \(k \ll n\)
\(\displaystyle \binom{n}{k} \sim \binom{n}{n/2} e^{-d^{2}/(2n)} \sim \frac{2^{n}}{\sqrt{2^{-1} n \pi}} e^{-d^{2}/(2n)}\) where \(d=n-2k\) for \(n \gg 0\) and \(|n/2-k| = o(n^{2/3})\) (so that \(n \propto k\))
\(\displaystyle \binom{z}{k} \approx \frac{(-1)^{k}}{k^{z+1}\cdot \Gamma(-z)}\) for \(z \in \mathbb{C}\) and \(k \in \mathbb{N}_{\ge 0}\) such that \(k \gg 0\)
\(\displaystyle \binom{z}{k} \approx \frac{(-1)^{k}}{k^{z+1}\cdot \Gamma(-z)}\) for \(z \in \mathbb{C}\) and \(k \in \mathbb{N}_{\ge 0}\) such that \(k \gg 0\)
\(\displaystyle \binom{z+k}{k} = \frac{k^{z}}{\Gamma(z+1)} \Big(1 + \frac{z(z+1)}{2k} + O(k^{-2}) \Big)\) for \(z \in \mathbb{C}\) and \(k \in \mathbb{N}_{\ge 0}\) such that \(k \gg 0\)
\(\displaystyle \binom{z+k}{k} \approx \frac{e^{z(H_{k}-\gamma)}}{\Gamma(z+1)}\) for \(z \in \mathbb{C}\) and \(k \in \mathbb{N}_{\ge 0}\) such that \(k \gg 0\) where \(H_{k}\) is the \(k\) th harmonic number and \(\gamma\) is the Euler-Mascheroni constant.
\(\displaystyle \lim_{k \rightarrow \infty} \binom{z+k}{j} \Bigg{/} \binom{k}{j} = \left(1- \frac{j}{k} \right)^{-z}\) for \(z,j \in \mathbb{C}\) and \(k \in \mathbb{N}_{\ge 0}\) where \(j/k\) converges in \(\mathbb{C}\)
\(\displaystyle \lim_{k\rightarrow \infty} \binom{j}{j-k}\Bigg{/} \binom{j-z}{j-k} = \left(\frac{j}{k}\right)^{z}\) for \(z,j \in \mathbb{C}\) and \(k \in \mathbb{N}_{\ge 0}\) where \(j/k\) converges in \(\mathbb{C}\)
1.10 the gamma function¶
\(\displaystyle \binom{z}{k} = (-1)^{k} \binom{-z+k-1}{k} = \frac{(-1)^{k}}{(k+1)^{z+1}\cdot \Gamma(-z)} \prod_{j=k+1}^\infty \frac{(1+\frac{1}{j})^{-z-1}}{1- \frac{z+1}{j} }\) for \(z \in \mathbb{C}\) and \(k \in \mathbb{N}_{\ge 0}\)
\(\displaystyle \binom{w}{z} = \frac{\Gamma(w+1)}{\Gamma(z+1)\Gamma(w-z+1)} = \frac{1}{(w+1)B(w-z+1,z+1)}\) where \(B(\_,\_)\) is the Beta function for \(w,z\in\mathbb{C}\)
1.11 the beta function¶
\(\displaystyle \binom{w}{z} = \frac{\Gamma(w+1)}{\Gamma(z+1)\Gamma(w-z+1)} = \frac{1}{(w+1)B(w-z+1,z+1)}\) where \(B(\_,\_)\) is the Beta function for \(w,z\in\mathbb{C}\)
2 Stirling numbers¶
Stirling numbers of the first kind: \(\displaystyle \frac{x!}{n!} = \sum_{k=0}^{n} s(n,k)x^k\)
table for \(s(n,k)\)
nk
0
1
2
3
4
5
6
7
8
9
0
1
1
0
1
2
0
1
1
3
0
2
3
1
4
0
6
11
6
1
5
0
24
50
35
10
1
6
0
120
274
225
85
15
1
7
0
720
1764
1624
735
175
21
1
8
0
5040
13068
13132
6769
1960
322
28
1
9
0
40320
109584
118124
67284
22449
4536
546
36
1
3 Fibonacci number¶
\(\displaystyle \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n-k}{k} = F(n+1)\) where \(F(n)\) is the \(n\) th Fibonacci number
6 Beta function¶
For \(w,z\in \mathbb{C}\) both with strictly positive real parts, the beta function is defined as an integral over the unit interval on \(\mathbb{R}\) as
\[B(w,z) := \int_{0}^{1} t^{w-1}(1-t)^{z-1} \, dt\]For \(w,z\in \mathbb{C}\) both with strictly positive real parts and \(x\in \mathbb{R}\), the incomplete beta function is defined as an integral over an interval on \(\mathbb{R}\) as
\[B(x;w,z) := \int_{0}^{x} t^{w-1}(1-t)^{z-1} \, dt\]For \(w,z\in \mathbb{C}\) both with strictly positive real parts and \(x\in \mathbb{R}\), the regularized (incomplete) beta function is defined as the ratio
\[I_{x}(w,z) := \frac{B(x;w,z)}{B(w,z)}\]The $boldsymbol{F}$-distribution \(F(k;n,p)\) is a discrete probability distribution describing the probability of having \(\lfloor k\rfloor\) times of success, regardless of the order, of probability \(p\) out of \(n\) trials:
\[F(k;n,p) := \sum_{i=0}^{k} \binom{n}{i} p^{i}(1-p)^{n-i} = I_{1-p}(n-k,k+1)\]
7 Euler integral of the first kind¶
This is an another name for the beta function.